import os import clip import torch from torchvision.datasets import CIFAR100 import gradio as gr # Load the model device = "cuda" if torch.cuda.is_available() else "cpu" model, transform = clip.load("ViT-B/32", device=device) # Download the dataset cifar100 = CIFAR100(root=os.path.expanduser("~/.cache"), download=True, train=False) def classify(img): image = transform(img).unsqueeze(0).to(device) text_inputs = torch.cat([clip.tokenize(f"a photo of a {c}") for c in cifar100.classes]).to(device) # Calculate features with torch.no_grad(): image_features = model.encode_image(image) text_features = model.encode_text(text_inputs) # Pick the top 5 most similar labels for the image image_features /= image_features.norm(dim=-1, keepdim=True) text_features /= text_features.norm(dim=-1, keepdim=True) similarity = (100.0 * image_features @ text_features.T).softmax(dim=-1) values, indices = similarity[0].topk(5) text="" # Print the result for value, index in zip(values, indices): text+=f"{cifar100.classes[index]:>16s}: {100 * value.item():.2f}%\n" return text inputs = gr.inputs.Image(type='pil', label="Original Image") outputs = gr.outputs.Textbox(type="str", label="Text Output") title = "CLIP" description = "CLIP demo" gr.Interface(classify, inputs, outputs, title=title, description=description).launch(debug=True)